返回
Featured image of post 【南瓜书】第五章

【南瓜书】第五章

本章详细讲解了神经网络相关算法,包括感知机模型、反向传播算法、Boltzmann机等核心内容

DigitalOcean Referral Badge DigitalOcean Referral Badge DigitalOcean Referral Badge

原文链接,转载请注明出处

5.2

$$\Delta w_i=\eta(y-\hat{y})x_i$$ [解析]:此公式是感知机学习算法中的参数更新公式,下面依次给出感知机模型、学习策略和学习算法的具体介绍[1]

感知机模型

已知感知机由两层神经元组成,故感知机模型的公式可表示为 $$y=f(\sum\limits_{i=1}^{n}w_ix_i-\theta)=f(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}-\theta)$$ 其中,$\boldsymbol{x} \in \mathbb{R}^n$为样本的特征向量,是感知机模型的输入;$\boldsymbol{w},\theta$是感知机模型的参数,$\boldsymbol{w} \in \mathbb{R}^n$为权重,$\theta$为阈值。上式中的$f$通常设为符号函数,那么感知机模型的公式可进一步表示为 $$ y=\operatorname{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}-\theta)=\left\{\begin{array}{rcl} 1,& {\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} -\theta\geq 0}\\ 0,& {\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} -\theta < 0}\\ \end{array} \right.$$ 由于$n$维空间中的超平面方程为 $$w_1x_1+w_2x_2+\cdots+w_nx_n+b =\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} +b=0$$ 所以此时感知机模型公式中的$\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}-\theta$可以看作是$n$维空间中的一个超平面,通过它将$n$维空间划分为$\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}-\theta\geq 0$和$\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}-\theta<0$两个子空间,落在前一个子空间的样本对应的模型输出值为1,落在后一个子空间的样本对应的模型输出值为0,以此来实现分类功能。

感知机学习策略

给定一个线性可分的数据集$T$(参见附录①),感知机的学习目标是求得能对数据集$T$中的正负样本完全正确划分的分离超平面: $$\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}-\theta=0$$ 假设此时误分类样本集合为$M\subseteq T$,对任意一个误分类样本$(\boldsymbol{x},y)\in M$来说,当$\boldsymbol{w}^\mathrm{T}\boldsymbol{x}-\theta \geq 0$时,模型输出值为$\hat{y}=1$,样本真实标记为$y=0$;反之,当$\boldsymbol{w}^\mathrm{T}\boldsymbol{x}-\theta<0$时,模型输出值为$\hat{y}=0$,样本真实标记为$y=1$。综合两种情形可知,以下公式恒成立 $$(\hat{y}-y)(\boldsymbol{w}^\mathrm{T}\boldsymbol{x}-\theta)\geq0$$ 所以,给定数据集$T$,其损失函数可以定义为: $$L(\boldsymbol{w},\theta)=\sum_{\boldsymbol{x}\in M}(\hat{y}-y)(\boldsymbol{w}^\mathrm{T}\boldsymbol{x}-\theta)$$ 显然,此损失函数是非负的。如果没有误分类点,损失函数值是0。而且,误分类点越少,误分类点离超平面越近,损失函数值就越小。因此,给定数据集$T$,损失函数$L(\boldsymbol{w},\theta)$是关于$\boldsymbol{w},\theta$的连续可导函数。

感知机学习算法

感知机模型的学习问题可以转化为求解损失函数的最优化问题,具体地,给定数据集 $$T=\{(\boldsymbol{x}_1,y_1),(\boldsymbol{x}_2,y_2),\dots,(\boldsymbol{x}_N,y_N)\}$$ 其中$\boldsymbol{x}_i \in \mathbb{R}^n,y_i \in \{0,1\}$,求参数$\boldsymbol{w},\theta$,使其为极小化损失函数的解: $$\min\limits_{\boldsymbol{w},\theta}L(\boldsymbol{w},\theta)=\min\limits_{\boldsymbol{w},\theta}\sum_{\boldsymbol{x_i}\in M}(\hat{y}_i-y_i)(\boldsymbol{w}^\mathrm{T}\boldsymbol{x}_i-\theta)$$ 其中$M\subseteq T$为误分类样本集合。若将阈值$\theta$看作一个固定输入为$-1$的“哑节点”,即 $$-\theta=-1\cdot w_{n+1}=x_{n+1}\cdot w_{n+1}$$ 那么$\boldsymbol{w}^\mathrm{T}\boldsymbol{x}_i-\theta$可化简为 $$\begin{aligned} \boldsymbol{w}^\mathrm{T}\boldsymbol{x_i}-\theta&=\sum \limits_{j=1}^n w_jx_j+x_{n+1}\cdot w_{n+1}\\ &=\sum \limits_{j=1}^{n+1}w_jx_j\\ &=\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x_i} \end{aligned}$$ 其中$\boldsymbol{x_i} \in \mathbb{R}^{n+1},\boldsymbol{w} \in \mathbb{R}^{n+1}$。根据该式,可将要求解的极小化问题进一步简化为 $$\min\limits_{\boldsymbol{w}}L(\boldsymbol{w})=\min\limits_{\boldsymbol{w}}\sum_{\boldsymbol{x_i}\in M}(\hat{y}_i-y_i)\boldsymbol{w}^\mathrm{T}\boldsymbol{x_i}$$ 假设误分类样本集合$M$固定,那么可以求得损失函数$L(\boldsymbol{w})$的梯度为: $$\nabla_{\boldsymbol{w}}L(\boldsymbol{w})=\sum_{\boldsymbol{x_i}\in M}(\hat{y}_i-y_i)\boldsymbol{x_i}$$ 感知机的学习算法具体采用的是随机梯度下降法,也就是极小化过程中不是一次使$M$中所有误分类点的梯度下降,而是一次随机选取一个误分类点使其梯度下降。所以权重$\boldsymbol{w}$的更新公式为 $$\boldsymbol w \leftarrow \boldsymbol w+\Delta \boldsymbol w$$ $$\Delta \boldsymbol w=-\eta(\hat{y}_i-y_i)\boldsymbol x_i=\eta(y_i-\hat{y}_i)\boldsymbol x_i$$ 相应地,$\boldsymbol{w}$中的某个分量$w_i$的更新公式即为公式(5.2)。

5.10

$$\begin{aligned} g_j&=-\frac{\partial {E_k}}{\partial{\hat{y}_j^k}} \cdot \frac{\partial{\hat{y}_j^k}}{\partial{\beta_j}} \\ &=-( \hat{y}_j^k-y_j^k ) f ^{\prime} (\beta_j-\theta_j) \\ &=\hat{y}_j^k(1-\hat{y}_j^k)(y_j^k-\hat{y}_j^k) \end{aligned}$$ [推导]:参见公式(5.12)

5.12

$$\Delta \theta_j = -\eta g_j$$ [推导]:因为 $$\Delta \theta_j = -\eta \cfrac{\partial E_k}{\partial \theta_j}$$ 又 $$ \begin{aligned} \cfrac{\partial E_k}{\partial \theta_j} &= \cfrac{\partial E_k}{\partial \hat{y}_j^k} \cdot\cfrac{\partial \hat{y}_j^k}{\partial \theta_j} \\ &= \cfrac{\partial E_k}{\partial \hat{y}_j^k} \cdot\cfrac{\partial [f(\beta_j-\theta_j)]}{\partial \theta_j} \\ &=\cfrac{\partial E_k}{\partial \hat{y}_j^k} \cdot f^{\prime}(\beta_j-\theta_j) \times (-1) \\ &=\cfrac{\partial E_k}{\partial \hat{y}_j^k} \cdot f\left(\beta_{j}-\theta_{j}\right)\times\left[1-f\left(\beta_{j}-\theta_{j}\right)\right] \times (-1) \\ &=\cfrac{\partial E_k}{\partial \hat{y}_j^k} \cdot \hat{y}_j^k\left(1-\hat{y}_j^k\right) \times (-1) \\ &=\cfrac{\partial\left[ \cfrac{1}{2} \sum\limits_{j=1}^{l}\left(\hat{y}_{j}^{k}-y_{j}^{k}\right)^{2}\right]}{\partial \hat{y}_{j}^{k}} \cdot \hat{y}_j^k\left(1-\hat{y}_j^k\right) \times (-1) \\ &=\cfrac{1}{2}\times 2(\hat{y}_j^k-y_j^k)\times 1 \cdot\hat{y}_j^k\left(1-\hat{y}_j^k\right) \times (-1) \\ &=(y_j^k-\hat{y}_j^k)\hat{y}_j^k\left(1-\hat{y}_j^k\right) \\ &= g_j \end{aligned} $$ 所以 $$\Delta \theta_j = -\eta \cfrac{\partial E_k}{\partial \theta_j}=-\eta g_j$$

5.13

$$\Delta v_{ih} = \eta e_h x_i$$ [推导]:因为 $$\Delta v_{ih} = -\eta \cfrac{\partial E_k}{\partial v_{ih}}$$ 又 $$ \begin{aligned} \cfrac{\partial E_k}{\partial v_{ih}} &= \sum_{j=1}^{l} \cfrac{\partial E_k}{\partial \hat{y}_j^k} \cdot \cfrac{\partial \hat{y}_j^k}{\partial \beta_j} \cdot \cfrac{\partial \beta_j}{\partial b_h} \cdot \cfrac{\partial b_h}{\partial \alpha_h} \cdot \cfrac{\partial \alpha_h}{\partial v_{ih}} \\ &= \sum_{j=1}^{l} \cfrac{\partial E_k}{\partial \hat{y}_j^k} \cdot \cfrac{\partial \hat{y}_j^k}{\partial \beta_j} \cdot \cfrac{\partial \beta_j}{\partial b_h} \cdot \cfrac{\partial b_h}{\partial \alpha_h} \cdot x_i \\ &= \sum_{j=1}^{l} \cfrac{\partial E_k}{\partial \hat{y}_j^k} \cdot \cfrac{\partial \hat{y}_j^k}{\partial \beta_j} \cdot \cfrac{\partial \beta_j}{\partial b_h} \cdot f^{\prime}(\alpha_h-\gamma_h) \cdot x_i \\ &= \sum_{j=1}^{l} \cfrac{\partial E_k}{\partial \hat{y}_j^k} \cdot \cfrac{\partial \hat{y}_j^k}{\partial \beta_j} \cdot w_{hj} \cdot f^{\prime}(\alpha_h-\gamma_h) \cdot x_i \\ &= \sum_{j=1}^{l} (-g_j) \cdot w_{hj} \cdot f^{\prime}(\alpha_h-\gamma_h) \cdot x_i \\ &= -f^{\prime}(\alpha_h-\gamma_h) \cdot \sum_{j=1}^{l} g_j \cdot w_{hj} \cdot x_i\\ &= -b_h(1-b_h) \cdot \sum_{j=1}^{l} g_j \cdot w_{hj} \cdot x_i \\ &= -e_h \cdot x_i \end{aligned} $$ 所以 $$\Delta v_{ih} =-\eta \cfrac{\partial E_k}{\partial v_{ih}} =\eta e_h x_i$$

5.14

$$\Delta \gamma_h= -\eta e_h$$ [推导]:因为 $$\Delta \gamma_h = -\eta \cfrac{\partial E_k}{\partial \gamma_h}$$ 又 $$ \begin{aligned} \cfrac{\partial E_k}{\partial \gamma_h} &= \sum_{j=1}^{l} \cfrac{\partial E_k}{\partial \hat{y}_j^k} \cdot \cfrac{\partial \hat{y}_j^k}{\partial \beta_j} \cdot \cfrac{\partial \beta_j}{\partial b_h} \cdot \cfrac{\partial b_h}{\partial \gamma_h} \\ &= \sum_{j=1}^{l} \cfrac{\partial E_k}{\partial \hat{y}_j^k} \cdot \cfrac{\partial \hat{y}_j^k}{\partial \beta_j} \cdot \cfrac{\partial \beta_j}{\partial b_h} \cdot f^{\prime}(\alpha_h-\gamma_h) \cdot (-1) \\ &= -\sum_{j=1}^{l} \cfrac{\partial E_k}{\partial \hat{y}_j^k} \cdot \cfrac{\partial \hat{y}_j^k}{\partial \beta_j} \cdot w_{hj} \cdot f^{\prime}(\alpha_h-\gamma_h)\\ &= -\sum_{j=1}^{l} \cfrac{\partial E_k}{\partial \hat{y}_j^k} \cdot \cfrac{\partial \hat{y}_j^k}{\partial \beta_j} \cdot w_{hj} \cdot b_h(1-b_h)\\ &= \sum_{j=1}^{l}g_j\cdot w_{hj} \cdot b_h(1-b_h)\\ &=e_h \end{aligned} $$ 所以 $$\Delta \gamma_h=-\eta\cfrac{\partial E_k}{\partial \gamma_h} = -\eta e_h$$

5.15

$$\begin{aligned} e_h&=-\frac{\partial {E_k}}{\partial{b_h}}\cdot \frac{\partial{b_h}}{\partial{\alpha_h}} \\ &=-\sum_{j=1}^l \frac{\partial {E_k}}{\partial{\beta_j}}\cdot \frac{\partial{\beta_j}}{\partial{b_h}}f^{\prime}(\alpha_h-\gamma_h) \\ &=\sum_{j=1}^l w_{hj}g_j f^{\prime}(\alpha_h-\gamma_h) \\ &=b_h(1-b_h)\sum_{j=1}^l w_{hj}g_j \end{aligned}$$ [推导]:参见公式(5.13)

5.20

$$E(\boldsymbol{s})=-\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}w_{ij}s_is_j-\sum_{i=1}^n\theta_is_i$$ [解析]:Boltzmann机本质上是一个引入了隐变量的无向图模型,无向图的能量可理解为 $$E_{graph}=E_{edges}+E_{nodes}$$ 其中,$E_{graph}$表示图的能量,$E_{edges}$表示图中边的能量,$E_{nodes}$表示图中结点的能量;边能量由两连接结点的值及其权重的乘积确定:$E_{{edge}_{ij}}=-w_{ij}s_is_j$,结点能量由结点的值及其阈值的乘积确定:$E_{{node}_i}=-\theta_is_i$;图中边的能量为图中所有边能量之和 $$E_{edges}=\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}E_{{edge}_{ij}}=-\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}w_{ij}s_is_j$$ 图中结点的能量为图中所有结点能量之和 $$E_{nodes}=\sum_{i=1}^nE_{{node}_i}=-\sum_{i=1}^n\theta_is_i$$ 故状态向量$\boldsymbol{s}$所对应的Boltzmann机能量为 $$E_{graph}=E_{edges}+E_{nodes}=-\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}w_{ij}s_is_j-\sum_{i=1}^n\theta_is_i$$

5.22

$$P(\boldsymbol{v}|\boldsymbol{h})=\prod_{i=1}^dP(v_i, | , \boldsymbol{h})$$ [解析]:受限Boltzmann机仅保留显层与隐层之间的连接,显层的状态向量为$\boldsymbol{v}$,隐层的状态向量为$\boldsymbol{h}$。 $$\boldsymbol{v}=\left[\begin{array}{c}v_1\\ v_2\\ \vdots\\ v_d\\\end{array} \right]\qquad \boldsymbol{h}=\left[\begin{array}{c}h_1\\h_2\\ \vdots\\ h_q\end{array} \right]$$ 对于显层状态向量$\boldsymbol{v}$中的变量$v_i$,其仅与隐层状态向量$\boldsymbol{h}$有关,所以给定隐层状态向量$\boldsymbol{h}$,$v_1,v_2,…,v_d$相互独立。

5.23

$$P(\boldsymbol{h}|\boldsymbol{v})=\prod_{j=1}^qP(h_i, | , \boldsymbol{v})$$ [解析]:由公式5.22的解析同理可得:给定显层状态向量$\boldsymbol{v}$,$h_1,h_2,\cdots,h_q$相互独立。

5.24

$$\Delta w=\eta(\boldsymbol{v}\boldsymbol{h}^\mathrm{T}-\boldsymbol{v}’\boldsymbol{h}’^{\mathrm{T}})$$ [推导]:由公式(5.20)可推导出受限Boltzmann机(以下简称RBM)的能量函数为: $$\begin{aligned} E(\boldsymbol{v},\boldsymbol{h})&=-\sum_{i=1}^d\sum_{j=1}^qw_{ij}v_ih_j-\sum_{i=1}^d\alpha_iv_i-\sum_{j=1}^q\beta_jh_j \\ &=-\boldsymbol{h}^{\mathrm{T}}\mathbf{W}\boldsymbol{v}-\boldsymbol{\alpha}^{\mathrm{T}}\boldsymbol{v}-\boldsymbol{\beta}^{\mathrm{T}}\boldsymbol{h} \end{aligned}$$ 其中 $$\mathbf{W}=\begin{bmatrix} \boldsymbol{w}_1\\ \boldsymbol{w}_2\\ \vdots\\ \boldsymbol{w}_q \end{bmatrix}\in \mathbb{R}^{q*d}$$ 再由公式(5.21)可知,RBM的联合概率分布为 $$P(\boldsymbol{v},\boldsymbol{h})=\frac{1}{Z}e^{-E(\boldsymbol{v},\boldsymbol{h})}$$ 其中$Z$为规范化因子 $$Z=\sum_{\boldsymbol{v},\boldsymbol{h}}e^{-E(\boldsymbol{v},\boldsymbol{h})}$$ 给定含$m$个独立同分布数据的数据集$V=\{\boldsymbol{v}_1,\boldsymbol{v}_2,\cdots,\boldsymbol{v}_m\}$,记$\boldsymbol{\theta}=\{\mathbf{W},\boldsymbol{\alpha},\boldsymbol{\beta}\}$,学习RBM的策略是求出参数$\boldsymbol{\theta}$的值,使得如下对数似然函数最大化 $$\begin{aligned} L(\boldsymbol{\theta})&=\ln\left(\prod_{k=1}^{m}P(\boldsymbol{v}_k)\right) \\ &=\sum_{k=1}^m\ln P(\boldsymbol{v}_k) \\ &= \sum_{k=1}^m L_k(\boldsymbol{\theta}) \end{aligned}$$ 具体采用的是梯度上升法来求解参数$\boldsymbol{\theta}$,因此,下面来考虑求对数似然函数$L(\boldsymbol{\theta})$的梯度。对于$V$中的任意一个样本$\boldsymbol{v}_k$来说,其$L_k(\boldsymbol{\theta})$的具体形式为 $$\begin{aligned} L_k(\boldsymbol{\theta})&=\ln P(\boldsymbol{v}_k) \\ &=\ln\left(\sum_{\boldsymbol{h}}P(\boldsymbol{v}_k,\boldsymbol{h})\right) \\ &=\ln\left(\sum_{\boldsymbol{h}}\frac{1}{Z}e^{-E(\boldsymbol{v}_k,\boldsymbol{h})}\right) \\ &=\ln\left(\sum_{\boldsymbol{h}}e^{-E(\boldsymbol{v}_k,\boldsymbol{h})}\right)-\ln Z \\ &=\ln\left(\sum_{\boldsymbol{h}}e^{-E(\boldsymbol{v}_k,\boldsymbol{h})}\right)-\ln\left(\sum_{\boldsymbol{v},\boldsymbol{h}}e^{-E({\boldsymbol{v},\boldsymbol{h})}}\right) \end{aligned}$$ 对$L_k(\boldsymbol{\theta})$进行求导 $$ \begin{aligned} \frac{\partial{L_k(\boldsymbol{\theta})}}{\partial{\boldsymbol{\theta}}}&=\frac{\partial}{\partial{\boldsymbol{\theta}}}\left[\ln\sum_{\boldsymbol{h}}e^{-E(\boldsymbol{v}_k,\boldsymbol{h})}\right]-\frac{\partial}{\partial{\boldsymbol{\theta}}}\left[\ln\sum_{\boldsymbol{v},\boldsymbol{h}}e^{-E({\boldsymbol{v},\boldsymbol{h})}}\right] \\ &=-\frac{\sum_{\boldsymbol{h}}e^{-E(\boldsymbol{v}_k,\boldsymbol{h})}\frac{\partial{E({\boldsymbol{v}_k,\boldsymbol{h})}}}{\partial{\boldsymbol{\theta}}}}{\sum_{\boldsymbol{h}}e^{-E(\boldsymbol{v}_k,\boldsymbol{h})}}+\frac{\sum_{\boldsymbol{v},\boldsymbol{h}}e^{-E(\boldsymbol{v},\boldsymbol{h})}\frac{\partial{E({\boldsymbol{v},\boldsymbol{h})}}}{\partial{\boldsymbol{\theta}}}}{\sum_{\boldsymbol{v},\boldsymbol{h}}e^{-E(\boldsymbol{v},\boldsymbol{h})}} \\ &=-\sum_{\boldsymbol{h}}\frac{e^{-E(\boldsymbol{v}_k,\boldsymbol{h})}\frac{\partial{E({\boldsymbol{v}_k,\boldsymbol{h})}}}{\partial{\boldsymbol{\theta}}}}{\sum_{\boldsymbol{h}}e^{-E(\boldsymbol{v}_k,\boldsymbol{h})}}+\sum_{\boldsymbol{v},\boldsymbol{h}}\frac{e^{-E(\boldsymbol{v},\boldsymbol{h})}\frac{\partial{E({\boldsymbol{v},\boldsymbol{h})}}}{\partial{\boldsymbol{\theta}}}}{\sum_{\boldsymbol{v},\boldsymbol{h}}e^{-E(\boldsymbol{v},\boldsymbol{h})}} \end{aligned} $$ 由于 $$\frac{e^{-E({\boldsymbol{v}_k,\boldsymbol{h})}}}{\sum_{\boldsymbol{h}}e^{-E({\boldsymbol{v}_k,\boldsymbol{h})}}}=\frac{\frac{e^{-E({\boldsymbol{v}_k,\boldsymbol{h})}}}{Z}}{\frac{\sum_{\boldsymbol{h}}e^{-E({\boldsymbol{v}_k,\boldsymbol{h})}}}{Z}}=\frac{\frac{e^{-E({\boldsymbol{v}_k,\boldsymbol{h})}}}{Z}}{\sum_{\boldsymbol{h}}\frac{e^{-E({\boldsymbol{v}_k,\boldsymbol{h})}}}{Z}}=\frac{P(\boldsymbol{v}_k,\boldsymbol{h})}{\sum_{\boldsymbol{h}}P(\boldsymbol{v}_k,\boldsymbol{h})}=P(\boldsymbol{h}|\boldsymbol{v}_k) $$ $$\frac{e^{-E({\boldsymbol{v},\boldsymbol{h})}}}{\sum_{\boldsymbol{v},\boldsymbol{h}}e^{-E({\boldsymbol{v},\boldsymbol{h})}}}=\frac{\frac{e^{-E({\boldsymbol{v},\boldsymbol{h})}}}{Z}}{\frac{\sum_{\boldsymbol{v},\boldsymbol{h}}e^{-E({\boldsymbol{v},\boldsymbol{h})}}}{Z}}=\frac{\frac{e^{-E({\boldsymbol{v},\boldsymbol{h})}}}{Z}}{\sum_{\boldsymbol{v},\boldsymbol{h}}\frac{e^{-E({\boldsymbol{v},\boldsymbol{h})}}}{Z}}=\frac{P(\boldsymbol{v},\boldsymbol{h})}{\sum_{\boldsymbol{v},\boldsymbol{h}}P(\boldsymbol{v},\boldsymbol{h})}=P(\boldsymbol{v},\boldsymbol{h})$$ 故 $$ \begin{aligned} \frac{\partial{L_k(\boldsymbol{\theta})}}{\partial{\boldsymbol{\theta}}}&=-\sum_{\boldsymbol{h}}P(\boldsymbol{h}|\boldsymbol{v}_k)\frac{\partial{E({\boldsymbol{v}_k,\boldsymbol{h})}}}{\partial{\boldsymbol{\theta}}}+\sum_{\boldsymbol{v},\boldsymbol{h}}P(\boldsymbol{v},\boldsymbol{h})\frac{\partial{E({\boldsymbol{v},\boldsymbol{h})}}}{\partial{\boldsymbol{\theta}}} \\ &=-\sum_{\boldsymbol{h}}P(\boldsymbol{h}|\boldsymbol{v}_k)\frac{\partial{E({\boldsymbol{v}_k,\boldsymbol{h})}}}{\partial{\boldsymbol{\theta}}}+\sum_{\boldsymbol{v}}\sum_{\boldsymbol{h}}P(\boldsymbol{v})P(\boldsymbol{h}|\boldsymbol{v})\frac{\partial{E({\boldsymbol{v},\boldsymbol{h})}}}{\partial{\boldsymbol{\theta}}} \\ &=-\sum_{\boldsymbol{h}}P(\boldsymbol{h}|\boldsymbol{v}_k)\frac{\partial{E({\boldsymbol{v}_k,\boldsymbol{h})}}}{\partial{\boldsymbol{\theta}}}+\sum_{\boldsymbol{v}}P(\boldsymbol{v})\sum_{\boldsymbol{h}}P(\boldsymbol{h}|\boldsymbol{v})\frac{\partial{E({\boldsymbol{v},\boldsymbol{h})}}}{\partial{\boldsymbol{\theta}}} \end{aligned}$$ 由于$\boldsymbol{\theta}=\{\mathbf{W},\boldsymbol{\alpha},\boldsymbol{\beta}\}$包含三个参数,在这里我们仅以$\mathbf{W}$中的任意一个分量$w_{ij}$为例进行详细推导。首先将上式中的$\boldsymbol{\theta}$替换为$w_{ij}$可得 $$\frac{\partial{L_k(\boldsymbol{\theta})}}{\partial{w_{ij}}}=-\sum_{\boldsymbol{h}}P(\boldsymbol{h}|\boldsymbol{v}_k)\frac{\partial{E({\boldsymbol{v}_k,\boldsymbol{h})}}}{\partial{w_{ij}}}+\sum_{\boldsymbol{v}}P(\boldsymbol{v})\sum_{\boldsymbol{h}}P(\boldsymbol{h}|\boldsymbol{v})\frac{\partial{E({\boldsymbol{v},\boldsymbol{h})}}}{\partial{w_{ij}}}$$ 根据公式(5.23)可知 $$\begin{aligned} &\sum_{\boldsymbol{h}}P(\boldsymbol{h}|\boldsymbol{v})\frac{\partial{E({\boldsymbol{v},\boldsymbol{h})}}}{\partial{w_{ij}}}\\ =&-\sum_{\boldsymbol{h}}P(\boldsymbol{h}|\boldsymbol{v})h_iv_j\\ =&-\sum_{\boldsymbol{h}}\prod_{l=1}^{q}P(h_l|\boldsymbol{v})h_iv_j\\ =&-\sum_{\boldsymbol{h}}P(h_i|\boldsymbol{v})\prod_{l=1,l\neq i}^{q}P(h_l|\boldsymbol{v})h_iv_j\\ =&-\sum_{\boldsymbol{h}}P(h_i|\boldsymbol{v})P(h_1,…,h_{i-1},h_{i+1},…,h_q|\boldsymbol{v})h_iv_j\\ =&-\sum_{h_i}P(h_i|\boldsymbol{v})h_iv_j\sum_{h_1,…,h_{i-1},h_{i+1},…,h_q}P(h_1,…,h_{i-1},h_{i+1},…,h_q|\boldsymbol{v})\\ =&-\sum_{h_i}P(h_i|\boldsymbol{v})h_iv_j\cdot 1\\ =&-\left[P(h_i=0|\boldsymbol{v})\cdot0\cdot v_j+P(h_i=1|\boldsymbol{v})\cdot 1\cdot v_j\right]\\ =&-P(h_i=1|\boldsymbol{v})v_j \end{aligned}$$ 同理可推得 $$\sum_{\boldsymbol{h}}P(\boldsymbol{h}|\boldsymbol{v}_k)\frac{\partial{E({\boldsymbol{v}_k,\boldsymbol{h})}}}{\partial{w_{ij}}}=-P(h_i=1|\boldsymbol{v}_k)v_j^k$$ 将以上两式代回$\frac{\partial{L_k(\boldsymbol{\theta})}}{\partial{w_{ij}}}$中可得 $$\frac{\partial{L_k(\boldsymbol{\theta})}}{\partial{w_{ij}}}=P(h_i=1|\boldsymbol{v}_k){v_{j}^k}-\sum_{\boldsymbol{v}}P(\boldsymbol{v})P(h_i=1|\boldsymbol{v})v_j$$ 观察此式可知,通过枚举所有可能的$\boldsymbol{v}$来计算$\sum_{\boldsymbol{v}}P(\boldsymbol{v})P(h_i=1|\boldsymbol{v})v_j$的复杂度太高,因此可以考虑求其近似值来简化计算。具体地,RBM通常采用的是西瓜书上所说的“对比散度”(Contrastive Divergence,简称CD)算法。CD算法的核心思想[2]是:用步长为$s$(通常设为1)的CD算法 $$CD_s(\boldsymbol{\theta},\boldsymbol{v})=-\sum_{\boldsymbol{h}}P(\boldsymbol{h}|\boldsymbol{v}^{(0)})\frac{\partial{E({\boldsymbol{v}^{(0)},\boldsymbol{h})}}}{\partial{\boldsymbol{\theta}}}+\sum_{\boldsymbol{h}}P(\boldsymbol{h}|\boldsymbol{v}^{(s)})\frac{\partial{E({\boldsymbol{v}^{(s)},\boldsymbol{h})}}}{\partial{\boldsymbol{\theta}}}$$ 近似代替 $$\frac{\partial{L_k(\boldsymbol{\theta})}}{\partial{\boldsymbol{\theta}}}=-\sum_{\boldsymbol{h}}P(\boldsymbol{h}|\boldsymbol{v}_k)\frac{\partial{E({\boldsymbol{v}_k,\boldsymbol{h})}}}{\partial{\boldsymbol{\theta}}}+\sum_{\boldsymbol{v}}P(\boldsymbol{v})\sum_{\boldsymbol{h}}P(\boldsymbol{h}|\boldsymbol{v})\frac{\partial{E({\boldsymbol{v},\boldsymbol{h})}}}{\partial{\boldsymbol{\theta}}}$$ 由此可知对于$w_{ij}$来说,就是用 $$CD_s(w_{ij},\boldsymbol{v})=P(h_i=1|\boldsymbol{v}^{(0)}){v_{j}^{(0)}}-P(h_i=1|\boldsymbol{v}^{(s)})v_j^{(s)}$$ 近似代替 $$\frac{\partial{L_k(\boldsymbol{\theta})}}{\partial{w_{ij}}}=P(h_i=1|\boldsymbol{v}_k){v_{j}^k}-\sum_{\boldsymbol{v}}P(\boldsymbol{v})P(h_i=1|\boldsymbol{v})v_j$$ 令$\Delta w_{ij}:=\frac{\partial{L_k(\boldsymbol{\theta})}}{\partial{w_{ij}}}$,$RBM(\boldsymbol\theta)$表示参数为$\boldsymbol{\theta}$的RBM网络,则$CD_s(w_{ij},\boldsymbol{v})$的具体算法可表示为:

  • 输入:$s,V=\{\boldsymbol{v}_1,\boldsymbol{v}_2,\cdots,\boldsymbol{v}_m\},RBM(\boldsymbol\theta)$
  • 过程:
    1. 初始化:$\Delta w_{ij}=0$
    2. $for\quad \boldsymbol{v}\in V \quad do$
    3. $\quad \boldsymbol{v}^{(0)}:=\boldsymbol{v}$
    4. $\quad for\quad t=1,2,…,s-1\quad do$
    5. $\qquad \boldsymbol{h}^{(t)}=h_given_v(\boldsymbol{v}^{(t)},RBM(\boldsymbol\theta))$
    6. $\qquad \boldsymbol{v}^{(t+1)}=v_given_h(\boldsymbol{h}^{(t)},RBM(\boldsymbol\theta))$
    7. $\quad end\quad for$
    8. $\quad for\quad i=1,2,…,q;j=1,2,…,d\quad do$
    9. $\qquad \Delta w_{ij}=\Delta w_{ij}+\left[P(h_i=1|\boldsymbol{v}^{(0)}){v_{j}^{(0)}}-P(h_i=1|\boldsymbol{v}^{(s)})v_j^{(s)}\right]$
    10. $\quad end\quad for$
    11. $end\quad for$
  • 输出:$\Delta w_{ij}$

其中函数$h_given_v(\boldsymbol{v},RBM(\boldsymbol\theta))$表示在给定$\boldsymbol{v}$的条件下,从$RBM(\boldsymbol\theta)$中采样生成$\boldsymbol{h}$,同理,函数$v_given_h(\boldsymbol{h},RBM(\boldsymbol\theta))$表示在给定$\boldsymbol{h}$的条件下,从$RBM(\boldsymbol\theta)$中采样生成$\boldsymbol{v}$。由于两个函数的算法可以互相类比推得,因此,下面仅给出函数$h_given_v(\boldsymbol{v},RBM(\boldsymbol\theta))$的具体算法:

  • 输入:$\boldsymbol{v},RBM(\boldsymbol\theta)$
  • 过程:
    1. $for \quad i=1,2,…,q \quad do$
    2. $\quad \text{随机生成} 0\leq\alpha_i\leq 1$
    3. $\quad h_{j}=\left\{\begin{array}{ll}1, & \text { if } \alpha_{i}<P(h_i=1|\boldsymbol{v}) \\ 0, & \text { otherwise }\end{array}\right.$
    4. $end \quad for$
  • 输出:$\boldsymbol{h}=(h_1,h_2,…,h_q)^{\mathrm{T}}$

综上可知,公式(5.24)其实就是带有学习率为$\eta$的$\Delta w_{ij}$的一种形式化的表示。

附录

①数据集的线性可分[1]

给定一个数据集 $$T=\{(\boldsymbol{x}_1,y_1),(\boldsymbol{x}_2,y_2),…,(\boldsymbol{x}_N,y_N)\}$$ 其中,$\boldsymbol{x}_i\in \mathbb{R}^n,y_i\in\{0,1\},i=1,2,…,N$,如果存在某个超平面 $$\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} +b=0 $$ 能将数据集$T$中的正样本和负样本完全正确地划分到超平面两侧,即对所有$y_i=1$的样本$\boldsymbol{x}_i$,有$\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_i +b\geq0$,对所有$y_i=0$的样本$\boldsymbol{x}_i$,有$\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} _i+b<0$,则称数据集$T$线性可分,否则称数据集$T$线性不可分。

参考文献

[1]李航编著.统计学习方法[M].清华大学出版社,2012.
[2]https://blog.csdn.net/itplus/article/details/19408143

© 2020 - 2025    去去的博客
运行: 0天    书写: 605.5k字     80篇文章
总访客数:     总访问量:    

备案号: 赣ICP备2022002813号-2 |