返回
Featured image of post 【南瓜书】第二章

【南瓜书】第二章

本章深入讲解了机器学习中的ROC曲线和AUC指标,详细推导了AUC的计算公式,并通过具体示例解释了ROC曲线的绘制过程

DigitalOcean Referral Badge DigitalOcean Referral Badge DigitalOcean Referral Badge

原文链接,转载请注明出处

2.20

$$\text{AUC}=\frac{1}{2}\sum_{i=1}^{m-1}(x_{i+1} - x_i)\cdot(y_i + y_{i+1})$$ [解析]:在解释$\text{AUC}$公式之前,我们需要先弄清楚$\text{ROC}$曲线的具体绘制过程,下面我们就举个例子,按照西瓜书图2.4下方给出的绘制方法来讲解一下$\text{ROC}$曲线的具体绘制过程。假设我们已经训练得到一个学习器$f(s)$,现在用该学习器来对我们的8个测试样本(4个正例,4个反例,也即$m^+=m^-=4$)进行预测,假设预测结果为: $$(s_1,0.77,+),(s_2,0.62,-),(s_3,0.58,+),(s_4,0.47,+)$$ $$(s_5,0.47,-),(s_6,0.33,-),(s_7,0.23,+),(s_8,0.15,-)$$ 其中,$+$和$-$分别表示为正例和为反例,里面的数字表示学习器$f(s)$预测该样本为正例的概率,例如对于反例$s_2$来说,当前学习器$f(s)$预测它是正例的概率为$0.62$。根据西瓜书上给出的绘制方法可知,首先需要对所有测试样本按照学习器给出的预测结果进行排序(上面给出的预测结果已经按照预测值从大到小排好),接着将分类阈值设为一个不可能取到的最大值,显然这时候所有样本预测为正例的概率都一定小于分类阈值,那么预测为正例的样本个数为0,相应的真正例率和假正例率也都为0,所以此时我们可以在坐标$(0,0)$处打一个点。接下来我们需要把分类阈值从大到小依次设为每个样本的预测值,也就是依次设为$0.77、0.62、0.58、0.47、0.33、0.23、0.15$,然后每次计算真正例率和假正例率,再在相应的坐标上打一个点,最后再将各个点用直线串连起来即可得到$\text{ROC}$曲线。需要注意的是,在统计预测结果时,预测值等于分类阈值的样本也算作预测为正例。例如,当分类阈值为$0.77$时,测试样本$s_1$被预测为正例,由于它的真实标记也是正例,所以此时$s_1$是一个真正例。为了便于绘图,我们将$x$轴(假正例率轴)的“步长”定为$\frac{1}{m^-}$,$y$轴(真正例率轴)的“步长”定为$\frac{1}{m^+}$,这样的话,根据真正例率和假正例率的定义可知,每次变动分类阈值时,若新增$i$个假正例,那么相应的$x$轴坐标也就增加$\frac{i}{m^-}$,同理,若新增$j$个真正例,那么相应的$y$轴坐标也就增加$\frac{j}{m^+}$。按照以上讲述的绘制流程,最终我们可以绘制出如下图所示的$\text{ROC}$曲线

在这里我们为了能在解析公式(2.21)时复用此图所以没有写上具体地数值,转而用其数学符号代替。其中绿色线段表示在分类阈值变动的过程中只新增了真正例,红色线段表示只新增了假正例,蓝色线段表示既新增了真正例也新增了假正例。根据$\text{AUC}$值的定义可知,此时的$\text{AUC}$值其实就是所有红色线段和蓝色线段与$x$轴围成的面积之和。观察上图可知,红色线段与$x$轴围成的图形恒为矩形,蓝色线段与$x$轴围成的图形恒为梯形,但是由于梯形面积公式既能算梯形面积,也能算矩形面积,所以无论是红色线段还是蓝色线段,其与$x$轴围成的面积都能用梯形公式来计算,也即 $$\frac{1}{2}\cdot(x_{i+1} - x_i)\cdot(y_i + y_{i+1})$$ 其中,$(x_{i+1} - x_i)$表示“高”,$y_i$表示“上底”,$y_{i+1}$表示“下底”。那么 $$\sum_{i=1}^{m-1}\left[\frac{1}{2}\cdot(x_{i+1} - x_i)\cdot(y_i + y_{i+1})\right]$$ 表示的便是对所有红色线段和蓝色线段与$x$轴围成的面积进行求和,此即为$\text{AUC}$

2.21

$$\ell_{rank}=\frac{1}{m^+m^-}\sum_{\boldsymbol{x}^+ \in D^+}\sum_{\boldsymbol{x}^- \in D^-}\left(\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)+\frac{1}{2}\mathbb{I}\left(f(\boldsymbol{x}^+)=f(\boldsymbol{x}^-)\right)\right)$$ [解析]:按照我们上述对公式(2.20)的解析思路,$\ell_{rank}$可以看作是所有绿色线段和蓝色线段与$y$轴围成的面积之和,但是公式(2.21)很难一眼看出其面积的具体计算方式,因此我们需要将公式(2.21)进行恒等变形 $$\begin{aligned} \ell_{rank}&=\frac{1}{m^+m^-}\sum_{\boldsymbol{x}^+ \in D^+}\sum_{\boldsymbol{x}^- \in D^-}\left(\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)+\frac{1}{2}\mathbb{I}\left(f(\boldsymbol{x}^+)=f(\boldsymbol{x}^-)\right)\right) \\ &=\frac{1}{m^+m^-}\sum_{\boldsymbol{x}^+ \in D^+}\left[\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)+\frac{1}{2}\cdot\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)=f(\boldsymbol{x}^-)\right)\right] \\ &=\sum_{\boldsymbol{x}^+ \in D^+}\left[\frac{1}{m^+}\cdot\frac{1}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)+\frac{1}{2}\cdot\frac{1}{m^+}\cdot\frac{1}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)=f(\boldsymbol{x}^-)\right)\right] \\ &=\sum_{\boldsymbol{x}^+ \in D^+}\frac{1}{2}\cdot\frac{1}{m^+}\cdot\left[\frac{2}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)+\frac{1}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)=f(\boldsymbol{x}^-)\right)\right] \\ \end{aligned}$$ 根据公式(2.20)中给出的$\text{ROC}$曲线图可知,在变动分类阈值的过程当中,如果有新增真正例,那么相应地就会增加一条绿色线段或蓝色线段,所以上式中的$\sum\limits_{\boldsymbol{x}^+ \in D^+}$可以看作是在遍历所有绿色和蓝色线段,那么相应地$\sum\limits_{\boldsymbol{x}^+ \in D^+}$后面的那一项便是在求绿色线段或者蓝色线段与$y$轴围成的面积,也即 $$\frac{1}{2}\cdot\frac{1}{m^+}\cdot\left[\frac{2}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)+\frac{1}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)=f(\boldsymbol{x}^-)\right)\right]$$ 同公式(2.20)中的求解思路一样,不论是绿色线段还是蓝色线段,其与$y$轴围成的图形面积都可以用梯形公式来进行计算,所以上式表示的依旧是一个梯形的面积求解公式。其中$\frac{1}{m^+}$即为梯形的“高”,中括号中的那一项便是“上底+下底”,下面我们来分别推导一下“上底”(较短的那个底)和“下底”。由于在绘制$\text{ROC}$曲线的过程中,每新增一个假正例时$x$坐标也就新增一个单位,所以对于“上底”,也就是绿色或者蓝色线段的下端点到$y$轴的距离,它就等于$\frac{1}{m^-}$乘以预测值比$\boldsymbol{x^+}$大的假正例的个数,也即 $$\frac{1}{m^-}\sum\limits_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)$$ 而对于“下底”,它就等于$\frac{1}{m^-}$乘以预测值大于等于$\boldsymbol{x^+}$的假正例的个数,也即 $$\frac{1}{m^-}\left(\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)+\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)=f(\boldsymbol{x}^-)\right)\right)$$

2.27

$$\overline{\epsilon}=\max \epsilon\quad \text { s.t. } \sum_{i= \epsilon_{0} \times m+1}^{m}\left(\begin{array}{c}{m} \\ {i}\end{array}\right) \epsilon^{i}(1-\epsilon)^{m-i}<\alpha$$

[推导]:截至2018年12月,第一版第30次印刷,公式(2.27)应当勘误修正为 $$\overline{\epsilon}=\min \epsilon\quad\text { s.t. } \sum_{i=\epsilon\times m+1}^{m}\left(\begin{array}{c}{m} \\ {i}\end{array}\right) \epsilon_0^{i}(1-\epsilon_0)^{m-i}<\alpha$$ 具体推导过程如下:由西瓜书中的上下文可知,对$\epsilon\leq\epsilon_0$进行假设检验,等价于附录①中所述的对$p\leq p_0$进行假设检验,所以在西瓜书中求解最大错误率$\overline{\epsilon}$等价于在附录①中求解事件最大发生频率$\frac{\overline{C}}{m}$。由附录①可知 $$\overline{C}=\min C\quad\text { s.t. } \sum_{i=C+1}^{m}\left(\begin{array}{c}{m} \\ {i}\end{array}\right) p_0^{i}(1-p_0)^{m-i}<\alpha$$ 所以 $$\frac{\overline{C}}{m}=\min \frac{C}{m}\quad\text { s.t. } \sum_{i=C+1}^{m}\left(\begin{array}{c}{m} \\ {i}\end{array}\right) p_0^{i}(1-p_0)^{m-i}<\alpha$$ 将上式中的$\frac{\overline{C}}{m},\frac{C}{m},p_0$等价替换为$\overline{\epsilon},\epsilon,\epsilon_0$可得 $$\overline{\epsilon}=\min \epsilon\quad\text { s.t. } \sum_{i=\epsilon\times m+1}^{m}\left(\begin{array}{c}{m} \\ {i}\end{array}\right) \epsilon_0^{i}(1-\epsilon_0)^{m-i}<\alpha$$

2.41

$$\begin{aligned} E(f ; D)=& \mathbb{E}_{D}\left[\left(f(\boldsymbol{x} ; D)-y_{D}\right)^{2}\right] \\ =& \mathbb{E}_{D}\left[\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})+\bar{f}(\boldsymbol{x})-y_{D}\right)^{2}\right] \\ =& \mathbb{E}_{D}\left[\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)^{2}\right]+\mathbb{E}_{D}\left[\left(\bar{f}(\boldsymbol{x})-y_{D}\right)^{2}\right] \\ &+\mathbb{E}_{D}\left[+2\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)\left(\bar{f}(\boldsymbol{x})-y_{D}\right)\right] \\ =& \mathbb{E}_{D}\left[\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)^{2}\right]+\mathbb{E}_{D}\left[\left(\bar{f}(\boldsymbol{x})-y_{D}\right)^{2}\right] \\ =& \mathbb{E}_{D}\left[\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)^{2}\right]+\mathbb{E}_{D}\left[\left(\bar{f}(\boldsymbol{x})-y+y-y_{D}\right)^{2}\right] \\ =& \mathbb{E}_{D}\left[\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)^{2}\right]+\mathbb{E}_{D}\left[\left(\bar{f}(\boldsymbol{x})-y\right)^{2}\right]+\mathbb{E}_{D}\left[\left(y-y_{D}\right)^{2}\right]\\ &+2 \mathbb{E}_{D}\left[\left(\bar{f}(\boldsymbol{x})-y\right)\left(y-y_{D}\right)\right]\\ =& \mathbb{E}_{D}\left[\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)^{2}\right]+\left(\bar{f}(\boldsymbol{x})-y\right)^{2}+\mathbb{E}_{D}\left[\left(y_{D}-y\right)^{2}\right] \end{aligned}$$

[解析]:

  • 第1-2步:减一个$\bar{f}(\boldsymbol{x})$再加一个$\bar{f}(\boldsymbol{x})$,属于简单的恒等变形;
  • 第2-3步:首先将中括号里面的式子展开 $$\mathbb{E}_{D}\left[\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)^{2}+\left(\bar{f}(\boldsymbol{x})-y_{D}\right)^{2}+2\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)\left(\bar{f}(\boldsymbol{x})-y_{D}\right)\right]$$ 然后根据期望的运算性质:$\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$可将上式化为 $$ \mathbb{E}_{D}\left[\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)^{2}\right]+\mathbb{E}_{D}\left[\left(\bar{f}(\boldsymbol{x})-y_{D}\right)^{2}\right] +\mathbb{E}_{D}\left[2\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)\left(\bar{f}(\boldsymbol{x})-y_{D}\right)\right]$$
  • 第3-4步:再次利用期望的运算性质将第3步得到的式子的最后一项展开 $$\mathbb{E}_{D}\left[2\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)\left(\bar{f}(\boldsymbol{x})-y_{D}\right)\right] = \mathbb{E}_{D}\left[2\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)\cdot\bar{f}(\boldsymbol{x})\right] - \mathbb{E}_{D}\left[2\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)\cdot y_{D}\right]$$
    • 首先计算展开后得到的第一项 $$\mathbb{E}_{D}\left[2\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)\cdot\bar{f}(\boldsymbol{x})\right] = \mathbb{E}_{D}\left[2f(\boldsymbol{x} ; D)\cdot\bar{f}(\boldsymbol{x})-2\bar{f}(\boldsymbol{x})\cdot\bar{f}(\boldsymbol{x})\right]$$ 由于$\bar{f}(\boldsymbol{x})$是常量,所以由期望的运算性质:$\mathbb{E}[AX+B]=A\mathbb{E}[X]+B$(其中$A,B$均为常量)可得 $$\mathbb{E}_{D}\left[2\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)\cdot\bar{f}(\boldsymbol{x})\right] = 2\bar{f}(\boldsymbol{x})\cdot\mathbb{E}_{D}\left[f(\boldsymbol{x} ; D)\right]-2\bar{f}(\boldsymbol{x})\cdot\bar{f}(\boldsymbol{x})$$ 由公式(2.37)可知:$\mathbb{E}_{D}\left[f(\boldsymbol{x} ; D)\right]=\bar{f}(\boldsymbol{x})$,所以 $$\mathbb{E}_{D}\left[2\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)\cdot\bar{f}(\boldsymbol{x})\right] = 2\bar{f}(\boldsymbol{x})\cdot\bar{f}(\boldsymbol{x})-2\bar{f}(\boldsymbol{x})\cdot\bar{f}(\boldsymbol{x})=0$$
    • 接着计算展开后得到的第二项 $$\mathbb{E}_{D}\left[2\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)\cdot y_{D}\right]=2\mathbb{E}_{D}\left[f(\boldsymbol{x} ; D)\cdot y_{D}\right]-2\bar{f}(\boldsymbol{x})\cdot \mathbb{E}_{D}\left[y_{D}\right]$$ 由于噪声和$f$无关,所以$f(\boldsymbol{x} ; D)$和$y_D$是两个相互独立的随机变量,所以根据期望的运算性质:$\mathbb{E}[XY]=\mathbb{E}[X]\mathbb{E}[Y]$(其中$X$和$Y$为相互独立的随机变量)可得 $$\begin{aligned} \mathbb{E}_{D}\left[2\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)\cdot y_{D}\right]&=2\mathbb{E}_{D}\left[f(\boldsymbol{x} ; D)\cdot y_{D}\right]-2\bar{f}(\boldsymbol{x})\cdot \mathbb{E}_{D}\left[y_{D}\right] \\ &=2\mathbb{E}_{D}\left[f(\boldsymbol{x} ; D)\right]\cdot \mathbb{E}_{D}\left[y_{D}\right]-2\bar{f}(\boldsymbol{x})\cdot \mathbb{E}_{D}\left[y_{D}\right] \\ &=2\bar{f}(\boldsymbol{x})\cdot \mathbb{E}_{D}\left[y_{D}\right]-2\bar{f}(\boldsymbol{x})\cdot \mathbb{E}_{D}\left[y_{D}\right] \\ &= 0 \end{aligned}$$ 所以 $$\begin{aligned} \mathbb{E}_{D}\left[2\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)\left(\bar{f}(\boldsymbol{x})-y_{D}\right)\right] &= \mathbb{E}_{D}\left[2\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)\cdot\bar{f}(\boldsymbol{x})\right] - \mathbb{E}_{D}\left[2\left(f(\boldsymbol{x} ; D)-\bar{f}(\boldsymbol{x})\right)\cdot y_{D}\right] \\ &= 0+0 \\ &=0 \end{aligned}$$
  • 第4-5步:同第1-2步一样,减一个$y$再加一个$y$,属于简单的恒等变形;
  • 第5-6步:同第2-3步一样,将最后一项利用期望的运算性质进行展开;
  • 第6-7步:因为$\bar{f}(\boldsymbol{x})$和$y$均为常量,所以根据期望的运算性质可知,第6步中的第2项可化为 $$\mathbb{E}_{D}\left[\left(\bar{f}(\boldsymbol{x})-y\right)^{2}\right]=\left(\bar{f}(\boldsymbol{x})-y\right)^{2}$$ 同理,第6步中的最后一项可化为 $$2\mathbb{E}_{D}\left[\left(\bar{f}(\boldsymbol{x})-y\right)\left(y-y_{D}\right)\right]=2\left(\bar{f}(\boldsymbol{x})-y\right)\mathbb{E}_{D}\left[\left(y-y_{D}\right)\right]$$ 由于此时假设噪声的期望为零,也即$\mathbb{E}_{D}\left[\left(y-y_{D}\right)\right]=0$,所以 $$2\mathbb{E}_{D}\left[\left(\bar{f}(\boldsymbol{x})-y\right)\left(y-y_{D}\right)\right]=2\left(\bar{f}(\boldsymbol{x})-y\right)\cdot 0=0$$

附录

①二项分布参数$p$的检验[1]

设某事件发生的概率为$p$,$p$未知,作$m$次独立试验,每次观察该事件是否发生,以$X$记该事件发生的次数,则$X$服从二项分布$B(m,p)$,现根据$X$检验如下假设: $$\begin{aligned} H_0:p\leq p_0\\ H_1:p > p_0 \end{aligned}$$ 由二项分布本身的特性可知:$p$越小,$X$取到较小值的概率越大。因此,对于上述假设,一个直观上合理的检验为 $$\varphi:\text{当}X\leq C\text{时接受}H_0,\text{否则就拒绝}H_0$$ 其中,$C\in N$表示事件最大发生次数。此检验对应的功效函数为 $$\begin{aligned} \beta_{\varphi}(p)&=P(X>C)\\ &=1-P(X\leq C) \\ &=1-\sum_{i=0}^{C}\left(\begin{array}{c}{m} \\ {i}\end{array}\right) p^{i} (1-p)^{m-i} \\ &=\sum_{i=C+1}^{m}\left(\begin{array}{c}{m} \\ {i}\end{array}\right) p^{i} (1-p)^{m-i} \\ \end{aligned}$$ 由于“$p$越小,$X$取到较小值的概率越大”可以等价表示为:$P(X\leq C)$是关于$p$的减函数(更为严格的数学证明参见参考文献[1]中第二章习题7),所以$\beta_{\varphi}(p)=P(X>C)=1-P(X\leq C)$是关于$p$的增函数,那么当$p\leq p_0$时,$\beta_{\varphi}(p_0)$即为$\beta_{\varphi}(p)$的上确界。又因为,根据参考文献[1]中5.1.3的定义1.2可知,检验水平$\alpha$默认取最小可能的水平,所以在给定检验水平$\alpha$时,可以通过如下方程解得满足检验水平$\alpha$的整数$C$: $$\alpha =\sup \left\{\beta_{\varphi}(p)\right\}$$ 显然,当$p\leq p_0$时: $$\begin{aligned} \alpha &=\sup \left\{\beta_{\varphi}(p)\right\} \\ &=\beta_{\varphi}(p_0) \\ &=\sum_{i=C+1}^{m}\left(\begin{array}{c}{m} \\ {i}\end{array}\right) p_0^{i} (1-p_0)^{m-i} \end{aligned}$$ 对于此方程,通常不一定正好解得一个整数$C$使得方程成立,较常见的情况是存在这样一个$\overline{C}$使得 $$\begin{aligned} \sum_{i=\overline{C}+1}^{m}\left(\begin{array}{c}{m} \\ {i}\end{array}\right) p_0^{i} (1-p_0)^{m-i}<\alpha \\ \sum_{i=\overline{C}}^{m}\left(\begin{array}{c}{m} \\ {i}\end{array}\right) p_0^{i} (1-p_0)^{m-i}>\alpha \end{aligned}$$ 此时,$C$只能取$\overline{C}$或者$\overline{C}+1$,若$C$取$\overline{C}$,则相当于升高了检验水平$\alpha$,若$C$取$\overline{C}+1$则相当于降低了检验水平$\alpha$,具体如何取舍需要结合实际情况,但是通常为了减小犯第一类错误的概率,会倾向于令$C$取$\overline{C}+1$。下面考虑如何求解$\overline{C}$:易证$\beta_{\varphi}(p_0)$是关于$C$的减函数,所以再结合上述关于$\overline{C}$的两个不等式易推得 $$\overline{C}=\min C\quad\text { s.t. } \sum_{i=C+1}^{m}\left(\begin{array}{c}{m} \\ {i}\end{array}\right) p_0^{i}(1-p_0)^{m-i}<\alpha$$

参考文献

[1]陈希孺编著.概率论与数理统计[M].中国科学技术大学出版社,2009.

© 2020 - 2025    去去的博客
运行: 0天    书写: 605.5k字     80篇文章
总访客数:     总访问量:    

备案号: 赣ICP备2022002813号-2 |